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(57) ABSTRACT

Methods and apparatus for three-dimensional (3D) camera
positioning using a two-dimensional (2D) vanishing point
grid. A vanishing point grid in a scene and initial camera
parameters may be obtained. A new 3D camera may be cal-
culated according to the vanishing point grid that places the
grid as a ground plane in a scene. A 3D object may then be
placed on the ground plane in the scene as defined by the 3D
camera. The 3D object may be placed at the center of the
vanishing point grid. Once placed, the 3D object can be
moved to other locations on the ground plane or otherwise
manipulated. The 3D object may be added as a layer in the
image.
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1
METHODS AND APPARATUS FOR 3D
CAMERA POSITIONING USING A 2D
VANISHING POINT GRID

PRIORITY INFORMATION

This application claims benefit of priority of U.S. Provi-
sional Application Ser. No. 61/612,847 entitled “Methods
and Apparatus for 3D Camera Positioning Using a 2D Van-
ishing Point Grid” filed Mar. 19, 2012, the content of which is
incorporated by reference herein in its entirety.

BACKGROUND

A task in the field of digital image processing is placing
digital objects, for example three-dimensional (3D) render-
ings of objects, into scenes, for example digital or digitized
photographs. However, placing 3D objects into a two-dimen-
sional (2D) scene (e.g., a digital photograph of a scene) so that
the objects appear realistically in the scene can be a difficult
task. A step in this process is to try to match the camera
parameters (e.g., camera location, orientation and field of
view) of the 3D camera to the digital photograph’s camera.
Conventionally, this matching has involved the photographer,
graphics artist, or other user manually trying to match the 3D
camera to the digital photograph’s camera.

SUMMARY

Various embodiments of methods and apparatus for three-
dimensional (3D) camera positioning using a two-dimen-
sional (2D) vanishing point grid are described. In embodi-
ments, a 2D vanishing point grid is obtained. From the
vanishing point grid, a field of view, and a current camera
location, a new 3D camera is calculated that places the van-
ishing point grid on the ground (i.e., as a ground plane). 3D
objects can then be placed on the ground plane.

In at least some embodiments, a vanishing point grid in a
scene and initial camera parameters may be obtained. A new
3D camera may be calculated according to the vanishing
point grid that places the grid as a ground plane. A 3D object
may then be placed on the ground plane as defined by the 3D
camera. In at least some embodiments, the 3D object is placed
at the center of the vanishing point grid. In at least some
embodiments, once placed, the 3D object can then be moved
to other locations on the ground plane or otherwise manipu-
lated (e.g., resizing, rotating, etc.) In at least some embodi-
ments, the 3D object is added as a layer in the image. Addi-
tional 3D objects can be placed on the ground plane and
similarly manipulated.

Embodiments may compute an approximate camera posi-
tion for a 3D space, using a vanishing point grid as a facili-
tator. To accomplish this, in at least some embodiments, a
vanishing point grid and initial camera parameters are
obtained. Based on the input, ground plane orientation calcu-
lations are performed. In at least some embodiments, these
calculations involve calculating vanishing point vectors in 3D
space, calculating a vanishing plane normal (up-vector), and
calculating new X and Z vectors. Camera orientations are
computed. In at least some embodiments, these computations
involve calculating a ground plane transformation matrix
with respect to a world-up vector, and calculating a camera
matrix from the ground plane transformation matrix. Finally,
a camera position is calculated according to one or more
conventions, and a 3D object is placed in the scene according
to the calculated camera position.
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2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a high-level flowchart of a method for three-
dimensional (3D) camera positioning using a two-dimen-
sional (2D) vanishing point grid, according to at least some
embodiments.

FIGS. 2 through 5 are flowcharts of methods for computing
approximate camera position fora 3D space using a vanishing
point grid as a facilitator, and for positioning 3D objects in the
space, according to at least some embodiments.

FIGS. 6A through 6F graphically illustrate an example
workflow and example user interface elements for imple-
menting and applying the methods for 3D camera positioning
using a 2D vanishing point grid, according to at least some
embodiments.

FIG. 7 is a flowchart of an example workflow method for
applying embodiments of the methods for 3D camera posi-
tioning using a 2D vanishing point grid, according to at least
some embodiments.

FIG. 8 illustrates an example module or modules that may
implement methods for 3D camera positioning using a 2D
vanishing point grid, according to at least some embodi-
ments.

FIG. 9 illustrates an example computer system that may be
used in embodiments.

While the invention is described herein by way of example
for several embodiments and illustrative drawings, those
skilled in the art will recognize that the invention is not
limited to the embodiments or drawings described. It should
be understood, that the drawings and detailed description
thereto are not intended to limit the invention to the particular
form disclosed, but on the contrary, the intention is to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present invention. The headings used
herein are for organizational purposes only and are not meant
to be used to limit the scope of the description. As used
throughout this application, the word “may” is used in a
permissive sense (i.e., meaning having the potential to),
rather than the mandatory sense (i.e., meaning must). Simi-
larly, the words “include”, “including”, and “includes” mean
including, but not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

In the following detailed description, numerous specific
details are set forth to provide a thorough understanding of
claimed subject matter. However, it will be understood by
those skilled in the art that claimed subject matter may be
practiced without these specific details. In other instances,
methods, apparatuses or systems that would be known by one
of ordinary skill have not been described in detail so as not to
obscure claimed subject matter.

Some portions of the detailed description which follow are
presented in terms of algorithms or symbolic representations
of operations on binary digital signals stored within a
memory of a specific apparatus or special purpose computing
device or platform. In the context of this particular specifica-
tion, the term specific apparatus or the like includes a general
purpose computer once it is programmed to perform particu-
lar functions pursuant to instructions from program software.
Algorithmic descriptions or symbolic representations are
examples of techniques used by those of ordinary skill in the
signal processing or related arts to convey the substance of
their work to others skilled in the art. An algorithm is here,
and is generally, considered to be a self-consistent sequence
of'operations or similar signal processing leading to a desired
result. In this context, operations or processing involve physi-
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cal manipulation of physical quantities. Typically, although
not necessarily, such quantities may take the form of electri-
cal or magnetic signals capable of being stored, transferred,
combined, compared or otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to such signals as bits, data, values, elements,
symbols, characters, terms, numbers, numerals or the like. It
should be understood, however, that all of these or similar
terms are to be associated with appropriate physical quanti-
ties and are merely convenient labels. Unless specifically
stated otherwise, as apparent from the following discussion, it
is appreciated that throughout this specification discussions
utilizing terms such as “processing,” “computing,” “calculat-
ing,” “determining” or the like refer to actions or processes of
a specific apparatus, such as a special purpose computer or a
similar special purpose electronic computing device. In the
context of this specification, therefore, a special purpose
computer or a similar special purpose electronic computing
device is capable of manipulating or transforming signals,
typically represented as physical electronic or magnetic
quantities within memories, registers, or other information
storage devices, transmission devices, or display devices of
the special purpose computer or similar special purpose elec-
tronic computing device.

Various embodiments of methods and apparatus for three-
dimensional (3D) camera positioning using a two-dimen-
sional (2D) vanishing point grid are described. In embodi-
ments, a 2D vanishing point grid is obtained. From the
vanishing point grid, a field of view, and a current camera
location, a new 3D camera is calculated that places the van-
ishing point grid on the ground (i.e., as a ground plane). One
or more 3D objects can then be placed on the ground plane.

Embodiments may leverage vanishing point planes that
may be generated according to vanishing point technology of
a digital image processing application. The vanishing point
technology allows the user to define 2D perspective planes
(vanishing point planes) in digital images via a user interface.
For example, to create a perspective plane, the user may select
avanishing point tool and use the tool to specify four points in
the image to thus define the plane. However, previous appli-
cations of vanishing point planes have typically been limited
to 2D imaging tasks. Embodiments may leverage a vanishing
point grid as input to a method for generating a 3D camera
that orients the vanishing point grid as a ground plane, which
allows the user to place 3D objects into the scene that are
automatically “snapped” to the ground plane.

FIG. 1 is a high-level flowchart of a method for 3D camera
positioning using a 2D vanishing point grid, according to at
least some embodiments. As indicated at 100, a vanishing
point grid in a scene and initial camera parameters may be
obtained. As indicated at 102, a new 3D camera may be
calculated according to the vanishing point grid that places
the grid as a ground plane. As indicated at 104, a 3D object
may then be positioned and placed on the ground plane as
defined by the 3D camera. In at least some embodiments, the
3D object is placed at the center of the vanishing point grid. In
at least some embodiments, once placed, the 3D object can
then be moved to other locations on the ground plane or
otherwise manipulated (e.g., resizing, rotating, etc.) Each of
the elements in FIG. 1 is described in more detail below.

Embodiments may compute an approximate camera posi-
tion for a 3D space, using a vanishing point grid as a facili-
tator. To accomplish this, in at least some embodiments, a
vanishing point grid and initial camera parameters are
obtained. Based on the input, ground plane orientation calcu-
lations are performed, camera orientations are computed, and
camera position is calculated according to one or more con-
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ventions. The following is a general description of the method
according to at least some embodiments, and is not intended
to be limiting. The method is described in more detail below
in relation to FIGS. 2 through 5.

Computing Orientations

The following broadly describes computing the orienta-
tions, according to at least some embodiments.

Vanishing points are converted from screen coordinates to
world coordinates, and then projected onto the focal plane of
the camera. In at least some embodiments, the camera may be
assumed to be at location (0,0,0), and the plane at —(focal
distance). Note that this will not be correct if the image has
been cropped irregularly and the camera is not at the center of
the image any more. In at least some embodiments, instead of
assuming the camera is at (0,0,0), the camera’s current loca-
tion may be used as an initial guess. This may, for example,
reduce the change that occurs when the method is applied
after a 3D model has already been loaded.

Two vanishing point vectors may then be obtained. The
vanishing plane may be defined by the vanishing point vectors
and the camera location. The normal of the vanishing plane is
obtained. The normal is made to point up if it does not. This
normal is the new up vector in the camera space.

Ifthe new camera is to be aligned with the old camera, the
old camera X vector and old camera Z vector are obtained. A
new Z vector is obtained from the old X vector and the new up
vector. If the new Z vector does not point in the same half-
plane as the old Z vector, the new Z vector is flipped. A new
X vector is obtained from the new Z vector and the new up
vector. If the new X vector does not point in the same half-
plane as the old X vector, the new X vector is flipped.

If the new camera does not need to be aligned with the old
camera, any two vectors, new X vector and new Z vector, may
be chosen that are perpendicular to the new up vector and to
each other. A new ground plane transformation matrix is
obtained from the new X vector, new up vector, and new Z
vector. The new ground plane transformation matrix is
inverted. This is the new camera matrix. At this point, the
orientation is computed. Next, the camera position needs to
be set.

Computing Camera Position

The following broadly describes computing the camera
position, according to at least some embodiments.

An offset needs to be calculated by which the camera is
moved from the scene center along the view direction. The
scene center may be computed from the scene and the current
object transformation matrix. The view direction may be
obtained from the camera matrix, which was previously com-
puted as noted above. The offset may be computed in different
ways, depending on whether the camera was aligned with the
old camera. Ifthe camera was aligned with the old camera, the
offset is the distance between the scene center and the old
camera position in world coordinates. Otherwise, in at least
some embodiments, the offset may be calculated by multi-
plying the scene bounding box diagonal by a specified value.
This value may need to be at least greater than 1, and gener-
ally may be at least 1.4. In at least some embodiments, the
camera position may then be obtained as

scene center—(offset*view direction).

Method Details

FIGS. 2 through 5 and the following discussion provide
details of a method for computing approximate camera posi-
tion for a 3D space using a vanishing point grid as a facilitator,
and for positioning 3D objects in the space, according to at
least some embodiments. The following discussion includes
pseudocode for implementing example algorithms, which is
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not intended to be limiting. The discussion and pseudocode
may refer to the following mathematical operations as defined
below:

tan(A)—tangent of angle A.

A x—=x-component of the vector A.

(AIBIC)—matrix composed of column-vectors A, B, and
C.

(AxB)—cross product of vectors A and B.

(A*d*B)—dot-product of vectors A and B.

det(A)—determinant of angle A.

Invert(A)—matrix, an inverse of matrix A.

normalize(A)—vector, normalized vector A.

FIG. 2 is a high-level flowchart of a method for computing
approximate camera position for a 3D space using a 2D
vanishing point grid as a facilitator, according to at least some
embodiments. Input including but not limited to a vanishing
point grid and initial camera parameters are obtained, as
indicated at 200. As indicated at 220, based on the input,
ground plane orientation calculations are performed. As indi-
cated at 240, camera orientations are computed. As indicated
at260, camera position is calculated according to one or more
conventions.

The following discussion describes each element of FIG. 2
in more detail.

Inputs to and Output of the Method

Inputs to the method may include one or more of, but are
not limited to:

Grid points P1, P2, P3, P4 in the document coordinate

system.

Vanishing points VP1 and VP2 in the document coordinate
system.

A 3D object.

Old camera position in the 3D world coordinate system. In
at least some embodiments, if a 3D object is being
loaded, a default camera position may be used.

Output of the method may include a new camera position
and orientation in the 3D world coordinate system.
Assumptions

In at least some embodiment, one or more of the following
may be assumed.

The camera has a vertical field of view of FOV (field of

view) degrees.

A projection center (image center) is in the center of the
document.

The vanishing point data is valid (i.e. points are not col-
linear, not collapsed into a single point, etc.)

The document coordinate system is: top left is (0, 0), bot-
tom right is (width, height) where width is image width,
etc.

In at least some embodiments, the overall method may be
split into three sub-methods or algorithms corresponding to
elements 220, 240, and 260 of FIG. 2. FIG. 3 is a flowchart of
element 220 in more detail, FIG. 4 is a flowchart of element
240 in more detail, and FIG. 5 is a flowchart of element 260 in
more detail.

Ground Plane Orientation Calculation Algorithm

As indicated at 220 of FIG. 2, ground plane orientation
calculations are performed. In at least some embodiments, the
ground plane orientation calculations may be performed
according to the following algorithm. In at least some
embodiments, this algorithm may make one or more of the
following assumptions.

A first assumption is that this algorithm works in the “cam-
era coordinate system” in which:

Camera (center of projection) is at 0,0,0:
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View direction in the camera coordinate system is (0, O,
-1). The focal plane will be orthogonal to view direc-
tion, passing through the point of (0, 0, -1);

The positive Y direction (0, 1, 0) is up in a camera coordi-
nate system.

A second assumption is that the ground plane orientation is
described via its orthonormal basis (newX, newY, newZ),
where newY is its normal. (newY has been previously
referred to herein as the “new up vector”).

Referring to FIG. 3, as indicated at 222, vanishing point
vectors may be calculated in 3D space. A vanishing point
vector may be defined as a vector starting from projection
center (0, 0, 0) in the direction of the vanishing point. The
following is example pseudocode of an algorithm that may be
used for this calculation in at least some embodiments, and is
not intended to be limiting:

scale=tan(FOV/2)/(height/2);
IC.x=width/2;

IC.y=height/2;
VPV1.x=scale*(VP1.x-IC.x);
VPV1.y=scale*(VP1.y-IC.y);
VPV1z=-1;
VPV2.x=scale*(VP2.x-IC.x);
VPV2.y=scale*(VP2.y-IC.y);

VPV2.z=-1;

Note that FOV indicates field of view, IC indicates image
center, VP indicates a vanishing point, and VPV indicates a
vanishing point vector. Note that there are two vanishing
points (VP1 and VP2) and two vanishing point vectors (VPV1
and VPV2).

As indicated at 224 of FIG. 3, the vanishing plane normal
(up-vector) may be calculated. In at least some embodiments,
this may be performed according to the following algorithm.

A vanishing point plane (VPN) may be defined as a plane
formed by two vanishing point vectors (VPV1 and VPV2):

VPN=VPVIxVPV2

The normal for the vanishing point plane can point in both
directions (above or below the plane). According to the first
assumption, the above direction would be the same direction
as (0,1, 0):

VPNup=VPN if (VPN.y>=0)- VPN if (VPN.y<0)

The VPNup may now serve as a Y-up vector for the new
ground plane.

newY=VPNup

As indicated at 226 of FIG. 3, the newX and newZ vectors
may be calculated. In at least some embodiments, this may be
performed according to the following algorithm.

Note that the set of possible newX and newZ, orthogonal to
the newY and to each other, is essentially infinite. The ground
plane can be spun around its up-vector however is desired,
and newX and newZ will stay in the original plane. In at least
some embodiments, to solve this gracefully (minimizing the
transition from the current state), the OLD ground plane
orientation (oldX, oldY, oldZ) may be used as an initial guess.

The following is pseudocode of an algorithm that calcu-
lates newX and newZ vectors so that they are as close to the
0ldX and oldZ as possible, while being orthogonal to the
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newY. Note that this pseudocode and algorithm are not
intended to be limiting; newX and newZ may be calculated
using other techniques.

newZ = oldX x newY;

if (newZs.length == 0) goto fallback;
if (newZ *d* oldZ <0)
{

newZ = -newZ;

newX = newZ x newy;,

if (newX.length == 0) goto fallback;
if (newX *d* oldX<0)
{

newXs = —newXs;

normalize(newX);
normalize(newZ);

In some cases (e.g., if the new ground plane is a 90-degree
roll from the old ground plane) the algorithm may not work;
the fallback would simply be picking a random newX vector
orthogonal to newY and calculating a newZ vector orthogo-
nal to both newX and newY. The fallback approach would still
produce a viable solution, and since the ground would tumble
strongly anyways, the impact of the fallback cases may be
minimal.

Calculating Camera Orientation

As indicated at 240 of FIG. 2, camera orientation is calcu-
lated. In at least some embodiments, camera orientation may
be calculated according to the following algorithm.

Note that the previous calculation assumed that the camera
is fixed, and that the ground plane is moving. However, in the
3D world representation, it’s vice-versa: the ground plane is
fixed at certain position with either Y-up or Z-up world ori-
entation, but the camera can be oriented arbitrarily.

Inputs to this algorithm may include the ground plane
orientation in the camera coordinate system calculated at
element 220 of FIG. 2 as described above. In at least some
embodiments, input may also include a specified up-vector
convention (Y-up or Z-up) that may be used to determine
whether the ground plane is in XZ plane or in XY plane,
respectively. Output of this algorithm is the camera orienta-
tion in the world coordinate system.

Referring to FIG. 4, as indicated at 242, a ground plane
transformation matrix with respect to the world-up vector
may be calculated. This calculation is given below as
pseudocode for both the Y-up case and the Z-up case, and is
not intended to be limiting.

Y-Up Case

In at least some embodiments, the following technique
may be used to calculate the ground plane transformation
matrix (GPT) with respect to the world-up vector for the Y-up
case. GPT is a 3x3 matrix constructed out of the three column
vectors newX, newY, newZ.:

GPT = (newX | newY | newZ);
if (det(GPT) < 0)

GPT=(-newX | newY | newZ);

}

Z-Up Case

In at least some embodiments, the following technique
may be used to calculate the ground plane transformation
matrix (GPT) with respect to the world-up vector for the Z-up
case. GPT is a 3x3 matrix constructed out of three column
vectors newX, newZ, newY:
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GPT=(newX | newZ | newY);
if (det(GPT)<0)
{

GPT=(-newX | newZ | newY);

}

Referring to FIG. 4, as indicated at 244, a camera matrix
(CT) may be calculated from the ground plane transformation
matrix (GPT). This calculation is given below, and is not
intended to be limiting. Note that the calculation inverts the
ground plane transformation (orientation) matrix, which
gives the camera matrix:

CT=Invert(GPT).

Calculating the Camera Position

As indicated at 260 of FIG. 2, camera position is calculated
according to one or more conventions. In at least some
embodiments, camera position may be calculated according
to the following algorithm.

Input to the algorithm may include the camera orientation,
a 3D object, and the center point of the vanishing point grid.
Output of the algorithm may include the camera position.

The two previous algorithms (elements 220 and 240 of
FIG. 2) calculated just the camera orientation (up-vector+
view-direction). However, in order to place the camera in a
3D space properly, its 3D position is needed. Mathematically,
any 3D position would work: with fixed orientation, the per-
spective camera’s horizon/vanishing plane stays fixed as
well, regardless of the position.

However, in at least some embodiments, one or more con-
ventions may be used for the camera that may help to narrow
the space and produce a plausible 3D camera position. These
conventions may include one or more of, but are not limited
to:

Convention 1—The camera should match the old camera

position as much as possible.

Convention 2—The camera should point at the 3D object
being rendered, having it in the view.

Convention 3—The camera should be positioned in such a
way that ground plane center is visually located at the
center of the vanishing point grid.

By convention, the ground plane center (point GPC) may

be at the bottom of the 3D object’s bounding box.

Referring to FIG. 5, as indicated at 262, the algorithm may
act to comply with conventions 1 and 2. In at least some
embodiments, to satisfy convention 1 and 2, the distance ‘d’
to the 3D object center (Co) of the old camera may be calcu-
lated, and the new position (Cp) may be calculated as:

Cp=Co-d*V;

where V is the camera view direction (which is known from
the camera orientation).

Referring to FIG. 5, as indicated at 262, the algorithm may
act to comply with convention 3, if possible. In at least some
embodiments, to accomplish this, the algorithm takes the
document central point ‘Dc’, using the camera position/ori-
entation data, and projects a ray R through this point into
space. This operation may be referred to as “unprojection,”
since instead of projecting a 3D point onto a 2D focal plane,
a 2D point on the focal plane is used to generate a ray R of all
possible 3D points that would project to it using the current
camera. Ray R is also sometimes referred to as an “epipolar
line” of the point Dc. The above may result in two cases.
Case 1

The ray R hits the ground plane at intersection point P. In
this case, the camera may be offset as follows, where GPC is
the ground plane center.
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For the Y-up case:

Cp.x=Cp.x—(Px-GPC.x);

Cp.z=Cp.z-(Pz—-GPC.z);
For the Z-Up case:

Cp.x=Cp.x—(Px-GPC.x);

Cp.y=Cp.y-(Py-GPC.y);

Case 2

Theray R does not hit the ground plane. This means that the
camera is pointed upward, but the ground plane is still visible
(the horizon line is in the bottom half of the image). For this
case, convention 3 is not met, and the current camera calcu-
lation may be left as is.

After calculating the camera position, the 3D object may be
added to the image and displayed in the scene according to the
camera position. In at least some embodiments, the 3D object
may be added as a layer in a layer stack of the image.
Example Workflows and User Interfaces

FIGS. 6A through 6F graphically illustrate an example
workflow and example user interface for implementing and
applying the methods for 3D camera positioning using a 2D
vanishing point grid, according to at least some embodi-
ments. The example user interface may be implemented in an
image processing application and accessed by a user to per-
form a workflow that allows the user to add 3D objects to a
ground plane in 2D images by leveraging a 2D vanishing
point grid as described herein. Note that the workflow and
user interface are given as examples, and are not intended to
be limiting.

FIG. 6A shows an example display 300 that includes a
canvas 306 area in which images may be displayed. Display
300 may also include a menus 302 area and a controls and
tools 304 area. Menus 302 and controls and tools 304 may
include one or more user interface elements (e.g., menus,
slider bars, buttons, dials alphanumeric text entry boxes,
panes, etc.) via which the user can access various image
processing tools and other functionality of the application
using a cursor control device (e.g., a mouse, keyboard, etc.) or
alternatively using a digit, pen or stylus if display 300 is
touch- or multitouch-enabled. FIG. 6A shows an example
image 308 currently in canvas 306 to which the user may wish
to add 3D objects.

FIG. 6B shows that the user has selected a menu 310 from
menus 302 area and is selecting a “vanishing point” menu
item from the menu. The arrow represents the cursor. In at
least some embodiments, menu 310 may be a 3D camera
menu from which the user may select various camera posi-
tions for the image 308 (e.g., front left, front right, etc.). As
shown in FIG. 6B, “vanishing point” may be an option in the
menu that lets the user select the camera positioning tech-
nique as described herein that leverages a 2D vanishing point
grid to position the camera according to a ground plane in the
image 308.

FIG. 6C shows that the user may define a 2D vanishing
point grid 320 on a surface in the image 308, in this example
on the ground. For example, the user may define the grid 320
by specifying the four vanishing point grid corners, repre-
sented by the white circles. If necessary, the user may adjust
the grid 320 after defining the grid, for example by grabbing
and dragging a corner or side via the cursor. In at least some
embodiments, the grid 320 may be added as a layer to the
image 308.

In at least some embodiments, after the vanishing point
grid 320 is specified, the methods for performing ground
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plane orientation calculations and calculating camera orien-
tations as described in reference to FIGS. 2, 3 and 4 may be
automatically applied according to the parameters of the van-
ishing point grid 320 that the user has specified and initial
camera parameters. However, note that, in at least some
embodiments, these methods may not be performed until a
3D object is specified as described below.

FIG. 6D shows that the user has selected a menu 312 from
menus 302 area and is selecting an “add 3D object” menu
item from the menu. In at least some embodiments, in
response to the user selecting the “add 3D object” menu item,
the application may display a user interface (e.g., a menu,
dialog box, another display, etc.) that allows the user to select
a particular 3D object or model that the user wants to add to
the image 308. The 3D object or model may, for example, be
stored in a file, and may be selected according to any one of
various techniques for selecting files stored in file systems.

In atleast some embodiments, after the user has specified a
3D object to be added to the image 308, the method for
calculating the camera position as described in reference to
FIGS. 2 and 5 may be automatically applied according to the
camera orientation, the 3D object, and the center point of the
vanishing point grid 320. In at least some embodiments, the
methods for performing ground plane orientation calcula-
tions and calculating camera orientations as described in ref-
erence to FIGS. 2, 3 and 4 may be automatically applied at
this time (i.e., when the 3D object is specified but before the
camera position is calculated) if they were not performed
before the 3D objects was selected.

After calculating the camera position, the 3D object may be
added to the image and displayed in the scene according to the
camera position. In at least some embodiments, the 3D object
may be added as a layer in a layer stack of the image. FIG. 6E
shows that the image from FIG. 6 A now includes an imported
3D object that has been automatically aligned to the vanishing
point grid 320 in 3D space as described herein. The dotted and
dashed lines show the centerlines of the grid 320. In at least
some embodiments, an overhead grid view may be displayed.
In at least some embodiments, after the 3D object has been
added to the image, the user may use one or more user inter-
face elements to adjust and/or edit the object. For example,
the user may rotate (in 3D) or move the object to another
location on the ground plane calculated from the grid via the
user interface.

FIG. 6F shows another example resulting image similar to
FIG. 6E. However, in this example, the vanishing point grid
was aligned differently than the example in FIG. 6E. As can
be seen in FIGS. 6E and 6F, when the 3D model is loaded into
the image, it is placed in the center of the grid, and the camera
is oriented so that the specified grid is on the ground.

FIG. 7 is a flowchart of an example workflow for applying
embodiments of the methods for 3D camera positioning using
a 2D vanishing point grid, according to at least some embodi-
ments. This workflow may, for example, be implemented
according to an example user interface as illustrated in FIGS.
6A through 6F.

As indicated at 400, input may be received selecting a
“vanishing point” 3D camera orientation. As indicated at 402,
additional input may be received specifying a vanishing point
grid. As indicated at 404, a new 3D camera may be calculated
according to the vanishing point grid that places the grid as a
ground plane. In at least some embodiments, the methods as
described in reference to FIGS. 3 and 4 may be automatically
applied at this time to perform ground plane orientation cal-
culations and calculate camera orientations. As indicated at
406, additional input may be received specifying a 3D object
to be placed in the scene. As indicated at 408, the 3D object
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may then be automatically placed on the ground plane as
defined by the 3D camera at the center of the vanishing point
grid. In at least some embodiments, the methods as described
in reference to FIG. 5 may be automatically applied at this
time to calculate the camera position. The 3D object may be
appropriately added to and displayed in the image, for
example as shown in FIGS. 6E and 6F.

The user may desire to adjust the positioning of the 3D
object in the scene (e.g., move or rotate the object). At 408, if
the user wants to adjust the 3D object in the scene, input may
be received to adjust the 3D object on the ground plane, for
example input rotating or moving the object on the ground
plane, as indicated at 410.

At 414, if the user wants to add another 3D object, then the
method may return to 406. Otherwise, the workflow is done.
Output is the input scene with one or more 3D objects added
to the image, each oriented according to a ground plane as
described herein. In at least some embodiments, each object
may be added as a separate layer to the image. Alternatively,
two or more objects may be added to the same layer.

While not shown, in at least some embodiments, input may
also be received indicating a specified up-vector convention
(Y-up or Z-up) that may be used to determine whether the
ground plane is in XZ plane or in XY plane, respectively.
Example Implementations

Some embodiments may include a means for computing
approximate camera position fora 3D space using a vanishing
point grid as a facilitator, and for positioning 3D objects in the
space, as described herein. For example, a module or modules
of an application may receive input including but not limited
to a vanishing point grid and initial camera parameters and,
based on the input, perform ground plane orientation calcu-
lations, compute camera orientations, and calculate a camera
position according to one or more conventions, as described
herein. The module or modules may in some embodiments be
implemented by a non-transitory, computer-readable storage
medium and one or more processors (e.g., CPUs and/or
GPUs) of a computing apparatus. The computer-readable
storage medium may store program instructions executable
by the one or more processors to cause the computing appa-
ratus to perform receiving input including but not limited to a
vanishing point grid and initial camera parameters, calculat-
ing ground plane orientation, computing camera orientations,
and calculating a camera position, as described herein. Other
embodiments of the module or modules may be at least par-
tially implemented by hardware circuitry and/or firmware
stored, for example, in a non-volatile memory.

FIG. 8 illustrates an example module or modules that may
implement one or more of the methods for 3D camera posi-
tioning using a 2D vanishing point grid as illustrated in FIGS.
1 through 7. F1G. 9 illustrates an example computer system on
which embodiments of module(s) 900 may be implemented.
Module(s) 900 receives as input a digital image 910A that
displays a scene. Module(s) 900 may receive user input 912
via user interface 902 selecting a vanishing point 3D camera
orientation. Module(s) 900 may receive additional user input
912 specifying a 2D vanishing point grid in the scene and
selecting a 3D object to add to the scene. In at least some
embodiments, module(s) 900 may also receive input indicat-
ing a specified up-vector convention (Y-up or Z-up) that may
be used to determine whether the ground plane is in XZ plane
or in XY plane, respectively. Module(s) 900 performs 3D
camera positioning 904 according to the input (e.g., ground
plane orientation calculations and camera orientation com-
putations as illustrated in FIGS. 3 and 4) and 3D object
placement 906 (e.g., camera position calculation as illus-
trated in FIG. 5) according to the input and calculations.

10

15

20

25

30

35

40

45

50

55

60

65

12

Elements 904 and 906 may be performed on a working image
910B displayed on a display device, and may involve adding
one or more layers to the image 910. Module(s) 900 generates
an output image 910C that includes at least one 3D object
added to the scene according to the methods described herein.
Output image 910C may, for example, be displayed on a
display 930 device, stored to a storage medium 940, such as
system memory, a disk drive, DVD, CD, etc., and/or passed
on to one or more other modules 950 for additional process-
ing.

Embodiments of the module(s) 900 or one or more of the
methods for 3D camera positioning using a 2D vanishing
point grid as illustrated in FIGS. 1 through 7 may be imple-
mented as plug-in(s) for applications, as library functions,
and/or as a stand-alone application. Embodiments of the
module or one or more of the methods and algorithms as
described herein may be implemented in any image process-
ing application, including but not limited to Adobe® Photo-
Shop® Adobe® PhotoShop® Elements®, and Adobe® After
Effects®. Adobe, PhotoShop, PhotoShop Flements, and
Adobe After Effects are either registered trademarks or trade-
marks of Adobe Systems Incorporated in the United States
and/or other countries.

Example System

Embodiments of the methods for 3D camera positioning
using a 2D vanishing point grid as illustrated in FIGS. 1
through 8 may be executed on one or more computer systems,
which may interact with various other devices. One such
computer system is illustrated by FIG. 9. In different embodi-
ments, computer system 1000 may be any of various types of
devices, including, but not limited to, a personal computer
system, desktop computer, laptop, notebook, or netbook
computer, pad or tablet device, mainframe computer system,
handheld computer, workstation, network computer, a cam-
era, a set top box, a mobile device, a wireless phone, a smart
phone, a consumer device, video game console, handheld
video game device, application server, storage device, a
peripheral device such as a switch, modem, router, or in
general any type of computing or electronic device.

In the illustrated embodiment, computer system 1000
includes one or more processors 1010 coupled to a system
memory 1020 via an input/output (1/0) interface 1030. Com-
puter system 1000 further includes a network interface 1040
coupled to I/O interface 1030, and one or more input/output
devices 1050, such as cursor control device 1060, keyboard
1070, and display(s) 1080. Computer system 1000 may also
include one or more touch- or multitouch-enabled devices as
input/output devices, for example a touch-enabled display
and/or pad. In some embodiments, it is contemplated that
embodiments may be implemented using a single instance of
computer system 1000, while in other embodiments multiple
such systems, or multiple nodes making up computer system
1000, may be configured to host different portions or
instances of embodiments. For example, in one embodiment
some elements may be implemented via one or more nodes of
computer system 1000 that are distinct from those nodes
implementing other elements.

In various embodiments, computer system 1000 may be a
uniprocessor system including one processor 1010, or a mul-
tiprocessor system including several processors 1010 (e.g.,
two, four, eight, or another suitable number). Processors 1010
may be any suitable processor capable of executing instruc-
tions. For example, in various embodiments, processors 1010
may be general-purpose or embedded processors implement-
ing any of a variety of instruction set architectures (ISAs),
such as the x86, PowerPC, SPARC, or MIPS ISAs, or any
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other suitable ISA. In multiprocessor systems, each of pro-
cessors 1010 may commonly, but not necessarily, implement
the same ISA.

In some embodiments, at least one processor 1010 may be
agraphics processing unit. A graphics processing unit or GPU
may be considered a dedicated graphics-rendering device for
a personal computer, workstation, game console or other
computing or electronic device. Modern GPUs may be very
efficient at manipulating and displaying computer graphics,
and their highly parallel structure may make them more effec-
tive than typical CPUs for a range of complex graphical
algorithms. For example, a graphics processor may imple-
ment a number of graphics primitive operations in a way that
makes executing them much faster than drawing directly to
the screen with a host central processing unit (CPU). In vari-
ous embodiments, the image processing methods disclosed
herein may, at least in part, be implemented by program
instructions configured for execution on one of, or parallel
execution on two or more of, such GPUs. The GPU(s) may
implement one or more application programmer interfaces
(APIs) that permit programmers to invoke the functionality of
the GPU(s). Suitable GPUs may be commercially available
from vendors such as NVIDIA Corporation, ATT Technolo-
gies (AMD), and others.

System memory 1020 may be configured to store program
instructions and/or data accessible by processor 1010. In vari-
ous embodiments, system memory 1020 may be imple-
mented using any suitable memory technology, such as static
random access memory (SRAM), synchronous dynamic
RAM (SDRAM), nonvolatile/Flash-type memory, or any
other type of memory. In the illustrated embodiment, pro-
gram instructions and data implementing desired functions,
such as those described above for embodiments of the meth-
ods for 3D camera positioning using a 2D vanishing point
grid as illustrated in FIGS. 1 through 8 are shown stored
within system memory 1020 as program instructions 1025
and data storage 1035, respectively. In other embodiments,
program instructions and/or data may be received, sent or
stored upon different types of computer-accessible media or
on similar media separate from system memory 1020 or com-
puter system 1000. Generally speaking, a computer-acces-
sible medium may include storage media or memory media
such as magnetic or optical media, e.g., disk or CD/DVD-
ROM coupled to computer system 1000 via I/O interface
1030. Program instructions and data stored via a computer-
accessible medium may be transmitted by transmission
media or signals such as electrical, electromagnetic, or digital
signals, which may be conveyed via a communication
medium such as a network and/or a wireless link, such as may
be implemented via network interface 1040.

In one embodiment, I/O interface 1030 may be configured
to coordinate /O traffic between processor 1010, system
memory 1020, and any peripheral devices in the device,
including network interface 1040 or other peripheral inter-
faces, such as input/output devices 1050. In some embodi-
ments, 1/O interface 1030 may perform any necessary proto-
col, timing or other data transformations to convert data
signals from one component (e.g., system memory 1020) into
a format suitable for use by another component (e.g., proces-
sor 1010). In some embodiments, I/O interface 1030 may
include support for devices attached through various types of
peripheral buses, such as a variant of the Peripheral Compo-
nent Interconnect (PCI) bus standard or the Universal Serial
Bus (USB) standard, for example. In some embodiments, the
function of I/O interface 1030 may be split into two or more
separate components, such as a north bridge and a south
bridge, for example. In addition, in some embodiments some
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or all of the functionality of I/O interface 1030, such as an
interface to system memory 1020, may be incorporated
directly into processor 1010.

Network interface 1040 may be configured to allow data to
be exchanged between computer system 1000 and other
devices attached to a network, such as other computer sys-
tems, or between nodes of computer system 1000. In various
embodiments, network interface 1040 may support commu-
nication via wired or wireless general data networks, such as
any suitable type of Ethernet network, for example; via tele-
communications/telephony networks such as analog voice
networks or digital fiber communications networks; via stor-
age area networks such as Fibre Channel SANs, or via any
other suitable type of network and/or protocol.

Input/output devices 1050 may, in some embodiments,
include one or more display terminals, keyboards, keypads,
touchpads, scanning devices, voice or optical recognition
devices, or any other devices suitable for entering or retriev-
ing data by one or more computer system 1000. Multiple
input/output devices 1050 may be present in computer system
1000 or may be distributed on various nodes of computer
system 1000. In some embodiments, similar input/output
devices may be separate from computer system 1000 and may
interact with one or more nodes of computer system 1000
through a wired or wireless connection, such as over network
interface 1040.

As shown in FIG. 9, memory 1020 may include program
instructions 1025, configured to implement embodiments of
the methods for 3D camera positioning using a 2D vanishing
point grid as illustrated in FIGS. 1 through 8, and data storage
1035, comprising various data accessible by program instruc-
tions 1025. In one embodiment, program instructions 1025
may include software elements of embodiments of the meth-
ods for 3D camera positioning using a 2D vanishing point
grid as illustrated in the above Figures. Data storage 1035
may include data that may be used in embodiments. In other
embodiments, other or different software elements and data
may be included.

Those skilled in the art will appreciate that computer sys-
tem 1000 is merely illustrative and is not intended to limit the
scope of the methods for 3D camera positioning using a 2D
vanishing point grid as described herein. In particular, the
computer system and devices may include any combination
of hardware or software that can perform the indicated func-
tions, including a computer, personal computer system, desk-
top computer, laptop, notebook, or netbook computer, pad or
tablet device, mainframe computer system, handheld com-
puter, workstation, network computer, a camera, a set top box,
a mobile device, network device, internet appliance, PDA,
wireless phones, smart phones, pagers, a consumer device,
video game console, handheld video game device, applica-
tion server, storage device, a peripheral device such as a
switch, modem, router, or in general any type of computing or
electronic device. Computer system 1000 may also be con-
nected to other devices that are not illustrated, or instead may
operate as a stand-alone system. In addition, the functionality
provided by the illustrated components may in some embodi-
ments be combined in fewer components or distributed in
additional components. Similarly, in some embodiments, the
functionality of some of the illustrated components may not
be provided and/or other additional functionality may be
available.

Those skilled in the art will also appreciate that, while
various items are illustrated as being stored in memory or on
storage while being used, these items or portions of them may
be transferred between memory and other storage devices for
purposes of memory management and data integrity. Alter-
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natively, in other embodiments some or all of the software
components may execute in memory on another device and
communicate with the illustrated computer system via inter-
computer communication. Some or all of the system compo-
nents or data structures may also be stored (e.g., as instruc-
tions or structured data) on a computer-accessible medium or
a portable article to be read by an appropriate drive, various
examples of which are described above. In some embodi-
ments, instructions stored on a computer-accessible medium
separate from computer system 1000 may be transmitted to
computer system 1000 via transmission media or signals such
as electrical, electromagnetic, or digital signals, conveyed via
a communication medium such as a network and/or a wireless
link. Various embodiments may further include receiving,
sending or storing instructions and/or data implemented in
accordance with the foregoing description upon a computer-
accessible medium. Accordingly, the present invention may
be practiced with other computer system configurations.

CONCLUSION

Various embodiments may further include receiving, send-
ing or storing instructions and/or data implemented in accor-
dance with the foregoing description upon a computer-acces-
sible medium. Generally speaking, a computer-accessible
medium may include storage media or memory media such as
magnetic or optical media, e.g., disk or DVD/CD-ROM, vola-
tile or non-volatile media such as RAM (e.g. SDRAM, DDR,
RDRAM, SRAM, etc.), ROM, etc., as well as transmission
media or signals such as electrical, electromagnetic, or digital
signals, conveyed via a communication medium such as net-
work and/or a wireless link.
The various methods as illustrated in the Figures and
described herein represent example embodiments of meth-
ods. The methods may be implemented in software, hard-
ware, or a combination thereof. The order of method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc.
Various modifications and changes may be made as would
be obvious to a person skilled in the art having the benefit of
this disclosure. It is intended that the invention embrace all
such modifications and changes and, accordingly, the above
description to be regarded in an illustrative rather than a
restrictive sense.
What is claimed is:
1. A method, comprising
performing, by one or more computing devices:
obtaining a two dimensional (2D) vanishing point grid and
initial camera parameters for a 2D scene, the vanishing
point grid specified by grid corners of a ground plane;

calculating a three-dimensional (3D) camera according to
the vanishing point grid, the 3D camera placing the
vanishing point grid as the ground plane in the 2D scene;
and

positioning a 3D object on the ground plane of the 2D scene

as defined by the 3D camera, the 3D object being a
rendered object not previously included in any 2D scene.

2. The method as recited in claim 1, wherein the 3D object
is positioned on the ground plane of the 2D scene as defined
by the 3D camera at the center of the vanishing point grid.

3. The method as recited in claim 1, wherein said calculat-
ing the 3D camera according to the vanishing point grid
comprises:

calculating a ground plane orientation of the ground plane

according to the vanishing point grid;

computing camera orientations; and

calculating a camera position of the 3D camera.
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4. The method as recited in claim 3, wherein said calculat-
ing the ground plane orientation comprises:

calculating vanishing point vectors in 3D space;

calculating a vanishing plane normal as an up-vector; and

calculating a new X vector and a new Z vector.

5. The method as recited in claim 3, wherein said comput-
ing the camera orientations comprises:

calculating a ground plane transformation matrix with

respect to a world-up vector; and

calculating a camera matrix from the ground plane trans-

formation matrix.

6. The method as recited in claim 3, wherein the camera
position is calculated according to one or more conventions.

7. The method as recited in claim 6, wherein the one or
more conventions include a first convention that the camera
should match an original camera position as much as pos-
sible, a second convention that the camera should point at the
3D object being rendered, and a third convention that the
camera should be positioned so that the ground plane centeris
visually located at the center of the vanishing point grid.

8. A system, comprising:

at least one processor; and

a memory comprising program instructions that are

executable by the at least one processor to:

obtain a two dimensional (2D) vanishing point grid and

initial camera parameters for a 2D scene, the vanishing
point grid specified by grid corners of a ground plane;
calculate a three-dimensional (3D) camera according to the
vanishing point grid, the 3D camera placing the vanish-
ing point grid as the ground plane in the 2D scene; and
position a 3D object on the ground plane of the 2D scene as
defined by the 3D camera, the 3D object being a ren-
dered object not previously included in any 2D scene.

9. The system as recited in claim 8, wherein the program
instructions are executable to position the 3D object on the
ground plane of the 2D scene as defined by the 3D camera at
the center of the vanishing point grid.

10. The system as recited in claim 8, wherein, to calculate
the 3D camera according to the vanishing point grid, the
program instructions are executable to:

calculate a ground plane orientation of the ground plane

according to the vanishing point grid;

compute camera orientations; and

calculate a camera position of the 3D camera.

11. The system as recited in claim 10, wherein, to calculate
the ground plane orientation, the program instructions are
executable to:

calculate vanishing point vectors in 3D space;

calculate a vanishing plane normal as an up-vector; and

calculate a new X vector and a new Z vector.

12. The system as recited in claim 10, wherein, to compute
the camera orientations, the program instructions are execut-
able to:

calculate a ground plane transformation matrix with

respect to a world-up vector; and

calculate a camera matrix from the ground plane transfor-

mation matrix.

13. The system as recited in claim 10, wherein the program
instructions are executable to calculate the camera position
according to one or more conventions.

14. The system as recited in claim 13, wherein the one or
more conventions include a first convention that the camera
should match an original camera position as much as pos-
sible, a second convention that the camera should point at the
3D object being rendered, and a third convention that the
camera should be positioned so that the ground plane centeris
visually located at the center of the vanishing point grid.
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15. A non-transitory computer-readable storage medium
storing program instructions that are computer-executable
comprising to implement:
obtaining a two dimensional (2D) vanishing point grid and
initial camera parameters for a 2D scene, the vanishing
point grid specified by grid corners of a ground plane;

calculating a three-dimensional (3D) camera according to
the vanishing point grid, the 3D camera placing the
vanishing point grid as the ground plane in the 2D scene;
and

positioning a 3D object on the ground plane of the 2D scene

as defined by the 3D camera, the 3D object being a
rendered object not previously included in any 2D scene.

16. The non-transitory computer-readable storage medium
as recited in claim 15, wherein the program instructions are
computer-executable to implement positioning the 3D object
on the ground plane of the 2D scene as defined by the 3D
camera at the center of the vanishing point grid.

17. The non-transitory computer-readable storage medium
as recited in claim 15, wherein, in said calculating the 3D
camera according to the vanishing point grid, the program
instructions are computer-executable to implement:

calculating a ground plane orientation of the ground plane

according to the vanishing point grid;

computing camera orientations; and

calculating a camera position of the 3D camera.
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18. The non-transitory computer-readable storage medium
as recited in claim 17, wherein, in said calculating the ground
plane orientation, the program instructions are computer-
executable to implement:

calculating vanishing point vectors in 3D space;

calculating a vanishing plane normal as an up-vector; and

calculating a new X vector and a new Z vector.

19. The non-transitory computer-readable storage medium
as recited in claim 17, wherein, in said computing the camera
orientations, the program instructions are computer-execut-
able to implement:

calculating a ground plane transformation matrix with

respect to a world-up vector; and

calculating a camera matrix from the ground plane trans-

formation matrix.

20. The non-transitory computer-readable storage medium
as recited in claim 17, wherein the program instructions are
computer-executable to implement calculating the camera
position according to one or more conventions that include a
first convention that the camera should match an original
camera position as much as possible, a second convention that
the camera should point at the 3D object being rendered, and
athird convention that the camera should be positioned so that
the ground plane center is visually located at the center of the
vanishing point grid.



